
CPTG122 Introduction to Computer Science II La Sierra University

Page 1 of 7 Copyright Enoch Hwang 2010

File Access

Data stored in variables that you create in your program are stored in volatile memory. This

means that when the program terminates all that data will be gone. In order to have persistent

data between program runs, you need to save your data to non-volatile storage such as the disk or

flash drive. There are two ways for storing your data to non-volatile storage.

1) You can write all your data to non-volatile storage right before the program exits, and

when you run your program again, you load all the data back into memory from the non-

volatile storage. This is best done using sequential file access. With this method you

need to keep all your data in memory and changes to the data during the program run are

only done in memory.

2) Every time you make changes to the data in memory, you will immediately write it out to

non-volatile storage. This is best done using random file access. This way you don’t

need to keep all your data in memory, only those that you will be changing.

1. Sequential File Access (12.1)

For a sequential file, you can only write/read data to/from a file sequentially from the beginning

to the end.

The following example shows how to write and read data to and from a sequential file on the

disk.

/* Example of sequential file access
 * with writing and reading of a text file.
 *
 * Enoch Hwang 2010
 */
#include <iostream>
#include <fstream>
using namespace std;

int main(){
 ////////////////// prepare for writing ///////////////////////
 ofstream outFile("test.txt"); // open the text file for writing
 if(!outFile) { // test to see if the file was opened successfully
 cout << "Cannot open file for writing.\n";
 return 0;
 }

 outFile << 10 << " " << 3.1415 << "\n"; // write to the file
 outFile << "This is a text line." << "\n"; // write again to the file

 int account = 12;
 char name[80] = "This is the second line";
 double balance = 123.45;
 // write three more things to the file
 outFile << account << " " << name << " " << balance << endl;
 outFile.close(); // close the file

CPTG122 Introduction to Computer Science II La Sierra University

Page 2 of 7 Copyright Enoch Hwang 2010

 ////////////////// prepare for reading ///////////////////////
 char buffer[256]; // buffer for reading each line from the file

 ifstream inFile("test.txt"); // open the text file for reading
 if (!inFile){
 cout << "Error opening file for reading.\n";
 return 0;
 }
 // read content of file
 while (!inFile.eof()){ // while not end-of-file
 inFile.getline (buffer,256); // read one line of 256 characters
 cout << buffer << endl;
 }
 inFile.close(); // close the file
 return 0;

}

Sample output

10 3.1415
This is a text line.
12 This is the second line 123.45

2. Access modes to open a file

In the above example we used the following to open a file for writing

 ofstream outFile("test.txt"); // open the text file for writing

and the following for reading

 ifstream inFile("test.txt"); // open the text file for reading

For ofstream the file is opened for output only. Data may be written to the file, but not read from

the file. If the file does not exist, it is created. If the file already exists, its contents are deleted.

For ifstream the file is opened for input only. Data may be read from the file, but not written to

it. The file’s contents will be read from the beginning. If the file does not exist, the open function

fails.

The following shows another way to open a file for writing using fstream. The access mode flag

ios::out means to open file for writing.

 fstream dataFile; // create file variable
 dataFile.open("test.txt", ios::out); // open file for output mode

Other access mode flags

ios::out Output mode. The file’s contents will be deleted if it already exists.

CPTG122 Introduction to Computer Science II La Sierra University

Page 3 of 7 Copyright Enoch Hwang 2010

ios::in Input mode. Data will be read from the file. If the file does not exist, it will not be

created, and the open will fail.

ios::app Append mode. If the file already exists, its contents are preserved and all output is

written to the end of the file. If the file does not exist, it will create it.

ios::ate If the file already exists, it will go directly to the end of it. Output may be written

anywhere in the file.

ios::binary Binary mode. Data are written to or read from using pure binary format. The

default mode is text mode.

You can combine one or more flags using the or | operator.

 fstream dataFile;
 dataFile.open("AddressBook.dat", ios::in | ios::out | ios::binary);

or

 fstream dataFile("AddressBook.dat", ios::in | ios::out | ios::binary);

3. getline function

getline gets an entire line up to a delimiter character. The default delimiter character, if one is

not given is \n which is the newline character. If you want to use another delimiter character you

can specify it in the third argument. The following will read from dataFile everything up to the &

and store the characters in myString.

#include <string> // needed for getline
using namespace std;

string myString;
getline(dataFile, myString, '&');

4. get and put member functions

The get and put functions read and write one character at a time.

 dataFile.get(ch); // read one character from dataFile into ch
 dataFile.put(ch); // write the character in ch to dataFile

5. write and read member functions (12.7 and 12.8)

The write function writes binary data to a file, and the read function reads binary data from a

file. The syntax is

 dataFile.write(address, size);

 dataFile.read(address, size);

where

CPTG122 Introduction to Computer Science II La Sierra University

Page 4 of 7 Copyright Enoch Hwang 2010

 dataFile is the name of a file stream object.

 address is the starting address of a block of memory to be written to the file. It is

expected to be a pointer to a char.

 size is the number of bytes of memory to write.

For the address, you’ll need to use the reinterpret_cast<char *> to convert the pointer for

your data type to a pointer to a char as shown next

 dataFile.write(reinterpret_cast<char*>(&person), sizeof(person));

The &person gives you a pointer to a person structure and the reinterpret_cast<char *>

converts the person structure pointer to a pointer of char.

For example

struct Info {
 char name[20];
 int age;
 char email[30];
};

 Info person;
 fstream dataFile("AddressBook.dat", ios::in | ios::out | ios::binary);

 dataFile.write(reinterpret_cast<char*>(&person), sizeof(person));

 dataFile.read(reinterpret_cast<char*>(&person), sizeof(person));

Note that in the record structure you should not use any dynamic data types such as the string

data type because the size can change, and if the size changes then you wouldn’t be able to

calculate the starting address of the next record. That’s why we need to use a char array instead

which has a fixed size.

CPTG122 Introduction to Computer Science II La Sierra University

Page 5 of 7 Copyright Enoch Hwang 2010

6. Random File Access (12.9)

For a random-access file, you can write/read data to/from anywhere in the file by jumping back

and forth in the file.

The seekp and seekg functions move the file access pointer to a certain byte position in the file

for the subsequent file access function call (get, put, read or write). You use seekp before a put

or write, and seekg before a get or read.

 dataFile.seekp(20, ios::beg); // move to 20 bytes from the beginning
 dataFile.write(reinterpret_cast<char*>(&person), sizeof(person));

 dataFile.seekg(-34, ios::end); // move 34 bytes back from the end
 dataFile.read(reinterpret_cast<char*>(&person), sizeof(person));

 dataFile.seekp(15, ios::cur); // move 15 bytes from the current position

The tellp and tellg functions return the current byte position that the file access pointer is at. The

following example shows how to find out the number of bytes that a file contains.

 dataFile.seekg(0, ios::end); // move the file pointer to the end of the file
 int numBytes = dataFile.tellg(); // get the byte position of the end
 cout << "The file has " << numBytes << " bytes";

Note that if you move the file pointer past the end of file then the file pointer will always stay at

–1 for subsequent seeks, i.e., subsequent seeks will not move the file pointer anymore. You’ll

need to close the file and open it again to make the seek work again.

CPTG122 Introduction to Computer Science II La Sierra University

Page 6 of 7 Copyright Enoch Hwang 2010

Example

// Random file access
#include <iostream>
#include <fstream>
#include <string> // needed for getline
#include <cstring> // needed for strcpy
using namespace std;

struct Info {
 char name[20];
 int age;
 char email[30];
};

int main() {
 Info person;
 fstream dataFile;

 dataFile.open("AddressBook.dat", ios::in | ios::out | ios::binary);
 if (!dataFile) { // file doesn’t exist so create new file
 dataFile.open("AddressBook.dat", ios::in | ios::out | ios::binary |
 ios::trunc);
 }

 // input person info
 string input;
 cout << "Enter name? ";
 getline(cin, input);
 // convert string to c-string
 strcpy(person.name, input.c_str()); // use this in replit
 //strcpy_s(person.name, input.c_str()); // use this in Visual Studio
 cout << "Enter age? ";
 getline(cin, input);
 person.age = stoi(input);
 cout << "Enter email? ";
 getline(cin, input);
 // convert string to c-string
 strcpy(person.email, input.c_str()); // use this in replit
 //strcpy_s(person.email, input.c_str()); // use this in Visual Studio

 // write record 3
 int record_number = 3;
 dataFile.seekp(record_number * sizeof(person), ios::beg);
 dataFile.write(reinterpret_cast<char*>(&person), sizeof(person));

 // read record 3
 record_number = 3;
 dataFile.seekg(record_number * sizeof(person), ios::beg);
 dataFile.read(reinterpret_cast<char*>(&person), sizeof(person));

 cout << "Name: " << person.name << endl;
 cout << "Age: " << person.age<< endl;
 cout << "Email: " << person.email << endl;

}

CPTG122 Introduction to Computer Science II La Sierra University

Page 7 of 7 Copyright Enoch Hwang 2010

7. Exercises (Problems with an asterisk are more difficult)

1. Write a program to open a sequential file that will append a line of text to the end of the

file each time that the program is run. The program first asks the user to enter a line of

text. This line is then added (appended) to the end of the existing file, so the file gets

longer and longer. Run the program five or more times and see that the file has five or

more lines.

2. * Write a program to make a copy of the file created in question 1. You will open the file

created in question 1 for reading and open another file for writing. Read the lines from

the first file and write it into the second file.

3. Implement the example random access file program in section 6.

4. * Continuing from the random access file program, add a menu for the user to select from

one of five options: 1) to add a new record to a given record number; 2) to print out the

information for a record for a given record number; 3) to change the information for a

given record number; 4) to delete a record for a given record number; and 5) to exit the

program. For options 1, 2, 3 and 4, the program needs to ask the user to enter a record

number. For options 1 and 3, the program will further ask the user for the new

information for the record.

